

DeDop – Inland Water Case Study Amazon river

BROCKMANN

CONSULT GMB

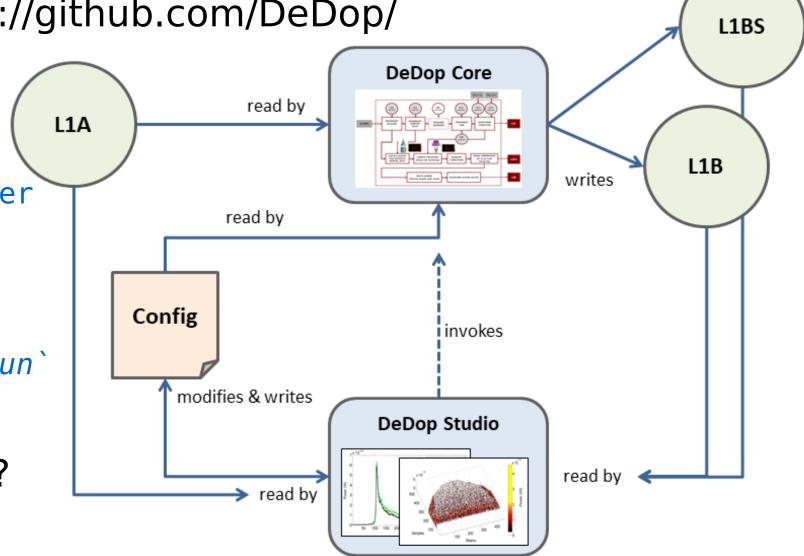
rdSAT

Nicolas Bercher(1), Mònica Roca(2), Norman Fomferra⁽³⁾, Hans Permana⁽³⁾, David Cotton⁽⁴⁾. (1) ALONG-TRACK - (2) IsardSAT – (3) Brockmann Consult - (4) SatOC Corresponding author: nbercher@along-track.com

Overview of the ACA-DDP Project

The ACA-DDP project is part of SEOM (Scientific Exploitation of Operational Missions). In this Project, isardSAT and Brockmann Consult, together with a group of scientists in a larger consortium, **have developed "DeDop"** (for delay-Doppler), **an open source tool to allow the processing of delay-Doppler altimetry data**.

Being open source and distributed online, the tool allows the user to select input data, choose and run processing options, and immediately query and view the results. This introduces a new paradigm in the processing of altimetry data, allowing a much more direct and immediate interaction with the processor in comparison to the use of Agency's or specialist's products, with periodic updates implemented over longer-time scales.

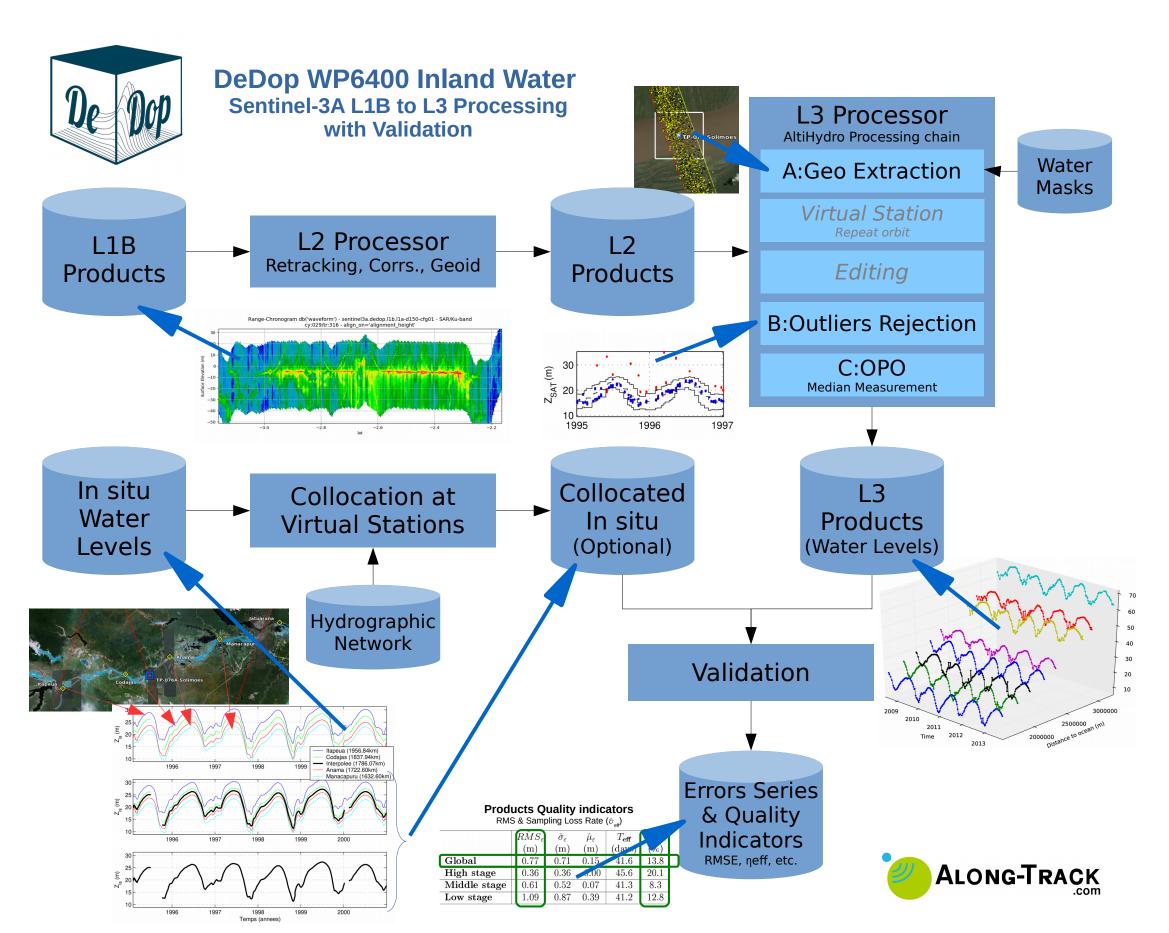

We present results from a case study on inland water in which the **DeDop Core** processor has been implemented on Sentinel-3A data over the Amazon river. The processor has been run using a custom configuration specifically designed for inland surfaces and improving the overall quality of the river water level measurements.

DeDop tools overview

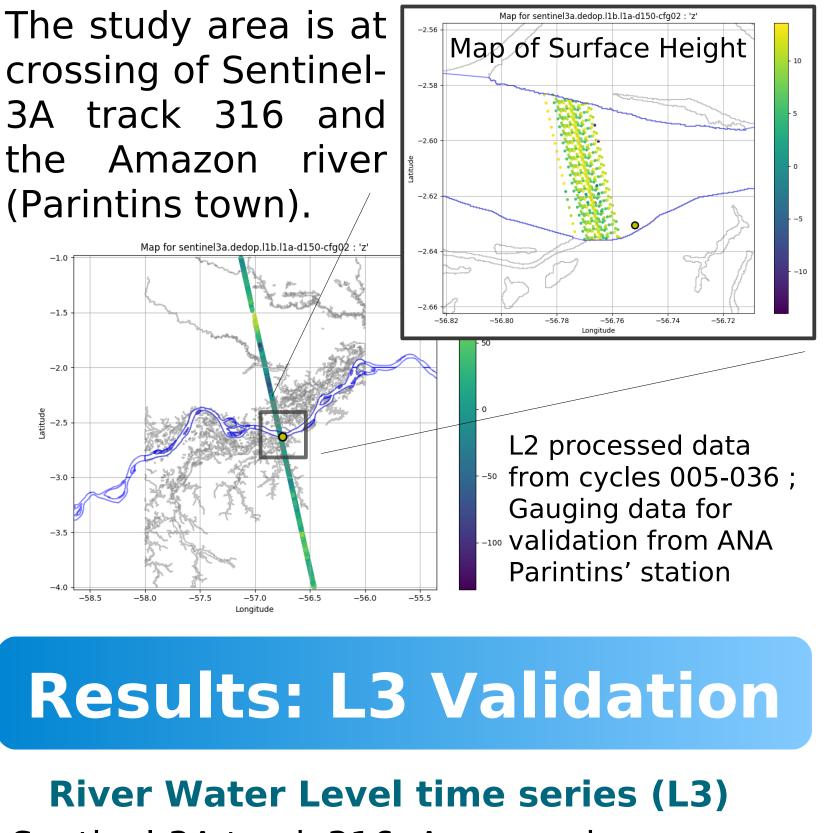
DeDop tools include command line interface **DeDop Core** and GUI oriented application **DeDop Studio**. All tools share configuration files and input/output data setup.

Find them on GitHub: https://github.com/DeDop/

- Sample shell session:
- \$ dedop workspace add amazon
 \$ dedop config add inland_water
 # Then edit your config file
 \$ dedop input add files*.nc
- \$ dedop run scheduler

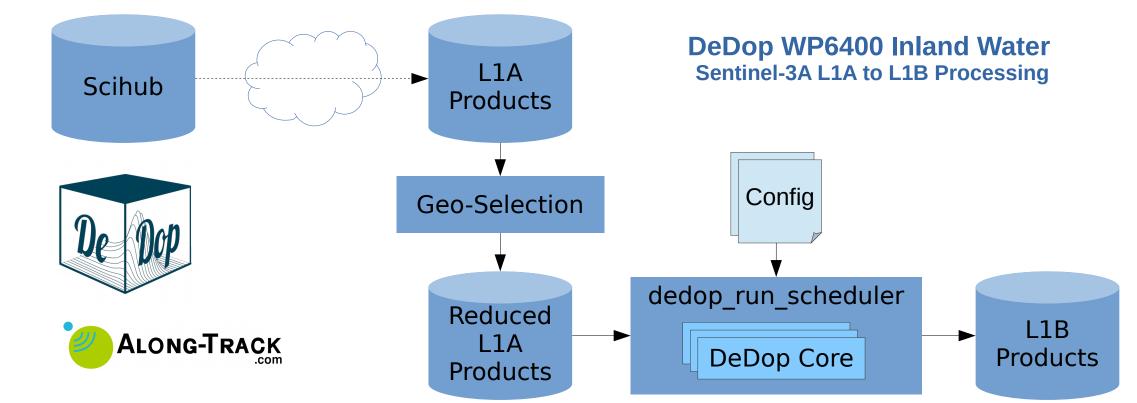


Or run on its own: `dedop run` \$ dedop output list


You're done ! Easy, isn't it ?

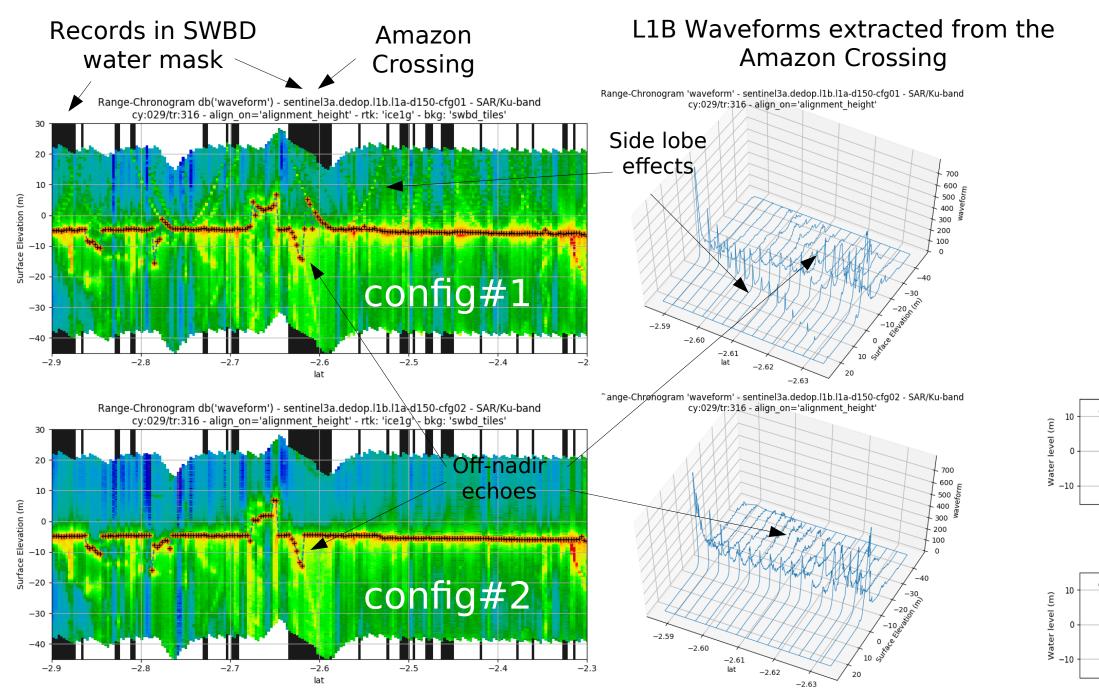
Processing stack : L2/L3Processors, Validation

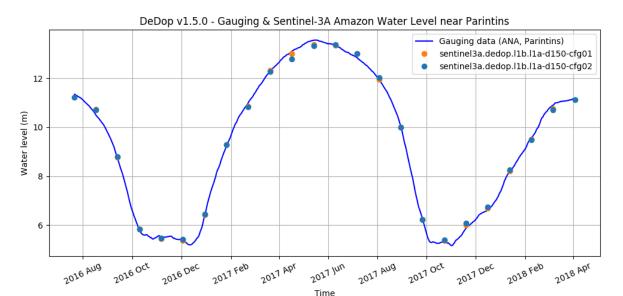
In this study, we setup a complete L1A to L3 (water level time series) including the DeDop Core, basic L2 Processor (with Ice1 retracker, EIGEN6C4+DTU13 Geoid model and L2 corrections copied from Jason-3/GDR-d AVISO data) together with a L3 Processor (water masking, outliers Rejections, etc.) in order to estimate water level time series over the Amazon.


Case Study Area

Sentinel-3A track 316, Amazon river Parintins gauging data.

DeDop Core: L1BS/L1B Processing with dedop_run_scheduler


Sentinel-3A L1A product files are downloaded from scihub Copernicus portal. Since tracks are pole-to-pole, they have been truncated for latitudes matching the Amazon river location. DeDop Core has been run on them with companion tool **dedop_run_scheduler**. The outputs can be L1B with optional L1BS data product files:



In order to make DeDop even more productive, ALONG-TRACK has developed a free and open source tool, named dedop_run_scheduler. This shell script allows to run several DeDop Core instances in parallel jobs (one input file processed per CPU core).

Results: L1B & L2 analysis

The whole processing chain (L1A \rightarrow L3) has been run for two DeDop configurations: basic config#1 and inland water config#2 with Hamming Windowing, Zero Padding Factor=2 and Exact focusing. Analysis on cycle 29 exhibits both off-nadir and side lobe effects on the resulting waveforms (L1B) for config#1 while config#2 improves the radargram/waveforms data.

Error quantification

L3 Water Level time series minus gauging data = Meas. Error \rightarrow Quality Indicators.

Outputs of intermediate steps A/B/C of the L3 processor have also been validated:

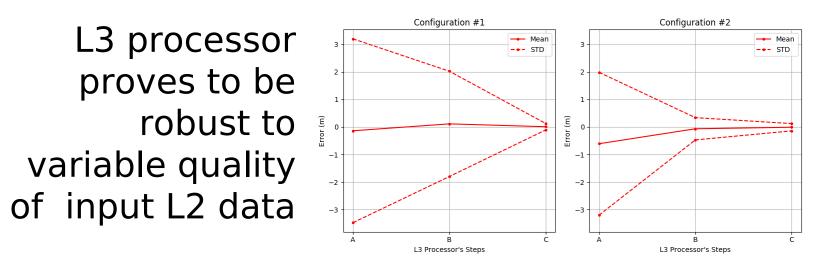


Table 3: Validation results for the L3 River Water Level time series. Detailed results for all steps of the L3 Processor, including: (A) L2 in water mask, (B) Outlier rejection and (C) final L3 for the two configurations #1 and #2.

L3 Processing Step	DDP Config	Nb meas.	Mean±STD (m)	RMSE (m)	Sampling Loss Rate (%)
Step A . L2 – All records in Water Mask	#1	422	-0.14±3.34	3.34	N.A. (SLR defined for L3 data only)
	#2	422	-0.61±2.60	2.66	
Step B. L2 - After outliers	#1	380	0.11±1.91	1.92	
rejection filter	#2	377	-0.07 ± 0.40	0.41	
Step C . L3 – Final: After OPO routine (median meas.)	#1	24	0.01±0.12	0.12	0%
	#2	24	- 0.01±0.13	0.13	0%

Go find **dedop_run_scheduler** on GitHub too:

https://github.com/nbercher-atk/dedop_run_scheduler

Conclusions

Conclusion

- DeDop Core tool (v1.5.0) has been implemented using Sentinel-3A L1A product files from Copernicus/Scihub to produce L1B data for two delay-Doppler configurations
- An add-on job scheduler has been developed in order to run several DeDop Core instances in parallel along with improvement in DeDop source Code (closed GitHub Issue #31)
- A full L2 → L3 Processing stack has been added on top of DeDop Core, in order to produce River Water Level time series
- Validation of the L3 River Water Level has been done against gauging data
- As expected, results demonstrates the benefits of a customised delay-Doppler configuration vs. a basic (ocean-like) configuration

	Outliers rejection filter - Time Series for 'sentinel3a.dedop.l1b.l1a-d150-cfg02'	OPO selection - Time Series for 'sentinel3a.dedop.l1b.l1a-d150-cfg02'	
10		14 • z (z_ice1g)	
0 -	L3 – Input		
-10 -	for Step A	te 6 €	_
Į			
	2016 hug 2016 Nov 2017 Feb 2017 May 2017 hug 2011 Nov 2018 Feb 2018 May 2018 Aug 2018 Nr	2016 AUG 2016 NOV 2017 FED 2017 MAY 2017 AUG 2017 NOV 2018 FED 2018 MAY 2018 AUG 2018	NON
	Time	Time	

	Ê ¹² • •		
	<u>v</u> 10	•	••
13 Output of Stop A		•	·L3 - Water
	• Nate		Level time '
присот Step В • z (z_ice	.g) - 6 • •	•	series
017 May 2017 AUG 2011 NOV 2018 Feb 2018 May 2018 AUG 2	2016 AUG 2016 NOV 20	17 Feb 2027 May 2027 AUG 2027 NOV 203	18 Feb 2018 May 2018 Aug 2018 N
		Input of Step B size in the second se	Input of Step B or z (z_icelg)

• WARNING: Keep in mind that "Hamming windowing" destroys information that might be useful indeed...

What's to come?

• Test new processings approaches starting from L1BS data produced by DeDop Core

• Contribute to DeDop code & tools !!!

Acknowledgments

The ACA-DDP / DeDop project is founded by ESA

Altimetry data: Sentinel-3A L1A data from Copernicus https://scihub.copernicus.eu/dhus/. **Ancillary data:** In situ data from ANA (Brazil) ; in situ gauge stations leveling from Kosuth et al. (2006) ; Water mask are SWBD ShapeFiles from SRTM; Geoid model grids from GRGS & GFZ.

