A step towards the characterization of SAR Mode Altimetry Data over Inland Waters – SHAPE project

(1) ALONG-TRACK, France : Pierre Fabry, Nicolas Bercher
(3) Deimos/ESRIN, Italy : Américo Ambrózio
(4) Serco/ESRIN, Italy : Marco Restano
(2) ESA-ESRIN, Italy : Jérôme Benveniste
The SHAPE project: “Sentinel-3 Hydrologic Altimetry Processor prototype”

Funded by ESA through the SEOM Programme Element to prepare for the exploitation of Sentinel-3 data over the inland water domain, with Objectives:

- **Characterise available SAR mode data over inland water.**
- Assess the performances, in Hydrology, of applying the Sentinel-3 IPF to CryoSat-2 data and emulating repeat-orbit Alti-Hydro Products (AHP).
- Analyse weaknesses of the Sentinel-3 IPF at all levels.
- Assess the benefits of assimilating the SAR/RDSAR derived AHP into hydrological models.
- Design innovative techniques to build and/or to refine the L1B-S and assess their impact onto L1B and AHP.
- Improve SAR/RDSAR retracking over river and lakes.
- Provide improved L2 Corrections (tropospheric, geoid) for Sentinel-3 over land and inland water.
- Specify, prototype, test and validate the Sentinel-3 Innovative SAR Processing Chain for Inland Water.
Even with SAR mode, Alti-Hydrology is a difficult topic

- very wide variety of scenarios
- wide across-track integration → loss of accuracy & precision.
- off-NADIR hooking: tracker window not always centered at NADIR
- space and time variability of the water area with:
 - low waters → contaminated waveforms due to sand banks …
 - High waters → flooded areas sometimes (outside water masks)
- Existing SARM data (CS2) faces most of these issues

Questions

- How characterize S3 waveforms over inland from Cryosat-2 data ?
- Is geodesic orbit an issue ?
Objectives

New framework with Automated Water Masking

- use updated water masks => synergy with imaging missions (S1)
- L1B → characterization
- L2 → measurements within the new framework

• How to?

- Compute the Doppler Footprints – to - Water Masks intersection area
- Define classes according to % of water mask within footprint
- Build Statistics (from beam behaviour param.) per class.
- Average waveforms per class.
Methodology

SWBD shapefiles, Beam-Doppler limited footprint computed, at each record, from the actual system parameters found in the .DBL records!
Methodology

Map for cryosat2.esa.l1b.C : 'ratio_water_pix_in_DF'

Water Fraction

Latitude: -2.60 to -2.90
Longitude: -58.3 to -57.9
Methodology
Methodology

- Beam-Doppler footprint (eq. From Cryosat-2 handbook)

Across-track beam size

\[D = h \cdot \tan(\theta_B + \theta/2) - h \cdot \tan(\theta_B - \theta/2) \]

- the antenna beam width at -3 dB,
- \(\theta_B \) the angle of the central beam direction with respect to the nadir

Along-track beam size

\[\Delta x = \frac{h \lambda \text{PRF}}{2v} \]

Along-track
Methodology

- Pulse-Doppler footprint (eq. From Cryosat-2 handbook)

Across-track beam size

\[r = \sqrt{h \cdot c \cdot \tau} = \sqrt{\frac{c}{B}} \]

\[\tau = \frac{1}{B} \quad \text{with } B \quad \text{being the pulse bandwidth}. \]

Along-track beam size

\[\Delta x = \frac{h \cdot \lambda \cdot \text{PRF}}{2 \cdot v \cdot 64} \]
Methodology

- Compute:
 \[
 \% \text{ water} = \frac{\text{footprint}_{\text{water}} \text{ pixels}}{\text{footprint}_{\text{all}} \text{ pixels}}
 \]

- While reading the acquisition parameters for each record and building the Beam-Doppler limited footprints we also access the **beam behaviour parameters** contained in the L1B products.

- Extract beam behaviour parameters from L1B (Stack Range Integrated Power Distributions)
 - **Mean Stack Standard Dev** of the Gaussian PDF fitting the stack RIP / record
 - **Mean Stack Centre** of the Gaussian PDF fitting the stack RIP / record
 - **Stack Scaled Amplitude**: amplitude scaled in dB/100 / record
 - **Stack Skewness**: asymmetry of the stack RIP distribution / record
 - **Stack Kurtosis**: peackiness of the stack RIP distribution / record
Data

- CryoSat-2 L1-B **Baseline C** data over Amazon (
- Time Period: 2014-01 to 2015-02:
- 210 / 289 L1B files (120000 records → 12000 selected records)
- Variable Instrument parameters (sat. velocity, tracker range, lat, lon) are read in the L1-B files
- Fixed bandwidth, PRF, antenna, carrier freq., etc.)
- SWBD water masks:
 - WARNING: old (SRTM) description of the Amazon
 - WARNING: preliminary results only to illustrate the method
SWBD based file selection

Raw data selection & Histogram: 115113 records, smallest 2000 records
SWBD based file selection

Histogram Equalisation (random data selection): 2000 records/class
Mean Waveform - All Water fraction classes

- Class 1: 0-20
- Class 2: 20-40
- Class 3: 40-60
- Class 4: 60-80
- Class 5: 80-120

Bin number
Mean WF per Water Fraction

Class 1: Water fraction 0-20 %
Class 2: Water fraction 20-40 %
Class 3: Water fraction 40-60%
Class 4 : Water fraction 60-80 %
Mean WF per Water Fraction

Class 5 : Water fraction 80-100 %
Waveforms per Water Fraction

Class 1: Water fraction 0-20%
Waveforms per Water Fraction

Class 2: Water fraction 20-40%
Waveforms per Water Fraction

Class 3: Water fraction 40-60%
Waveforms per Water Fraction

Class 4: Water fraction 60-80%
Waveforms per Water Fraction

Class 5: Water fraction 80-100%
Range Chronograms

Range-Chronogram - cryosat2.esa.l1b.C (SAR, Ku-band)
Range Chronograms
Results on the RIP

Standard Deviation of the RIP vs Skewness

High Water Fraction \Rightarrow High Standard Deviation and average asymmetry

Angular Response due to Wind, Targets at Far End and ?
Kurtosis of the RIP vs Skewness

High Water Fraction => small asymmetry, small peakiness

Angular Response due to Wind, Targets at Far End and?
Results on the RIP

Standard Deviation of the RIP vs Stack Scaled Amplitude

High Water Fraction \Rightarrow High Standard Deviation and Low Amplitude

Angular Response due to Wind, Targets at Far End and ?
• The whole technique is worth the effort if we can get watermasks in an automated manner on a regular basis.

• **Sentinel 1** offers a **perfect synergy with S3**

• **Automated delineation works** (next slide)

• **Transcription into watermasks** from delineated images is on the way at ALONG-TRACK!
• We developed a tool to generate Doppler Footprints per record from the L1-B data
• And to intersect it with watermasks
• We've highlighted the need to use the water fraction information within the Footprints to help analysis
• We've automated these tasks
• This automated framework changes the paradigm of VS and makes it possible to go further into details and better exploit Cryosat-2 data over inland water
Perspectives

- More editing: use products quality flags
- Antenna Gain weighted Water Fraction
- Use platform attitude for an improved footprint placement
- Use up to date water masks derived from Sentinel-1
- Seasonal Climatologies to better understand the Relationships between parameters within a Water Fraction Class